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Role of oocyte-specific genes in the development of 
mammalian embryos
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Studies on oocyte-specific genes are important in understanding
the genetic pathways essential for folliculogenesis, oogenesis
and early embryogenesis. Although the molecular mechanisms
regulating oocyte growth and embryo development in mammals
have partially been unraveled by gene knockout studies, many
aspects concerning reproduction remain to be determined.
Development of mammalian embryos starts with the fusion of
sperm and egg. After fertilization, the first major developmental
transition, maternal to zygotic transition, occurs at the specific
stages of preimplantation development in each mammal. The
transition is called zygotic gene activation (ZGA) or embryonic
genome activation. The ZGA is one of the most important
events that occur during preimplantation development; how-
ever, the mechanism of the event remains unknown. Because

the development until the transition is maintained by mater-
nally inherited proteins and transcripts stored in the oocytes,
it is highly likely that these products play an important role in
the initiation of ZGA. Several maternal-effects genes that are
specifically expressed in oocytes have been identified and their
involvement in preimplantation development has been revealed.
Therefore, to study oocyte-specific gene regulation would help
not only to understand the precise mechanisms of mammalian
development, but also to show the mechanisms of reproductive
disorders, such as premature ovarian failure and infertility.
(Reprod Med Biol 2006; 5: 175–182)
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INTRODUCTION

DEVELOPMENT OF MAMMALIAN embryos has
been studied for more than 50 years.1 The culture

of mammalian embryos has been intensively examined
in mice. The studies have lead to the successful in vitro
culture of embryos, however, the precise mechanism of
mammalian development has not yet been elucidated.

The development of one-cell mouse embryos, except
for embryos of some inbred strains and their F1 hybrids,
is blocked at the two-cell stage, a phenomenon that
has been termed ‘the two-cell block’.2–4 Cross-breeding
experiments have shown that maternally inherited
developmental information plays an important role in
controlling early cleavage of the mouse embryo.3 In
addition, the transfer of cytoplasm from non-blocked
embryos into blocked embryos recovers the develop-
mental competence of two-cell embryos in vitro.5 These
results suggest that the gene products such as mRNAs

and/or proteins stored in oocytes play important roles
in the development of embryos. The developmental
arrest in vitro can be overcome by modifying the culture
conditions; the addition of ethylenediaminetetracetic
acid (EDTA)6,7 and deletion of phosphate8 can eliminate
the developmental arrest in vitro. It has also been shown
that isolated mouse ampulla maintained in organ culture
can overcome the two-cell block in the mouse9 and ham-
ster.10 These observations indicate that the maternal
factors involved in the embryonic development are
closely associated with developmental environment.
Therefore, to study the gene functions in oocytes pro-
vides information about the relationship between mater-
nal factors and embryonic development in mammals.

In the present review, the role of oocyte-specific genes
in early embryogenesis is discussed.

ZYGOTIC GENE ACTIVATION AND EMBRYO 
DEVELOPMENT IN MAMMALS

THE MATERNAL TO zygotic transition is the first
major transition that occurs after fertilization. This

developmental program is initially directed by maternally
inherited proteins and transcripts, and the transcripts
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are mostly replaced by newly synthesized ones. In
mammals, zygotic gene activation (ZGA) has been
shown to be a two-step process consisting of minor and
major phases.11 In the mouse, the minor ZGA phase is
initiated at the late one-cell stage (G2 phase) with very
weak transcriptional activity.12–18 Consequently, some of
the proteins are synthesized at the early two-cell stage
(G1/S) for the next phase of ZGA, the major phase.19–24

It has been reported that reporter genes microinjected
into the pronuclei of one-cell mouse embryos are trans-
cribed during the minor ZGA phase.17,25–28 Because the
translation of maternal RNA is required for the initia-
tion of ZGA, the proteins stored in oocytes are utilized
in the early event of transcription at the late one-cell
stage.29 The regulation of the initiation of the transcrip-
tion and the following first mitotic events are mainly
controlled by maternally inherited products. At the G2
phase of the second cell cycle, the major ZGA phase,
which is characterized by an increase of transcriptional
and translational activity, occurs and results in a dramatic
change in the pattern of protein synthesis.11,19,27,30–32 In

many mammalian species, development of one-cell
embryos is blocked at various early stages in vitro. It has
been reported that the time of developmental arrest
in vitro coincides with the time of ZGA,33 suggesting
that there might be a relationship between the develop-
mental arrest in culture and transcriptional activity of
embryos.

ROLE OF OOCYTE-SPECIFIC GENES

THE GENE PRODUCTS expressed specifically in
oocytes play important roles in folliculogenesis,

fertilization and preimplantation development (Fig. 1).34

One of the most exciting molecules expressed in oocytes
is a member of the transforming growth factor β (TGF-β)
superfamily, growth differentiation factor 9 (Gdf-9),
which is obligatory for proper folliculogenesis beyond
the primary stage and fertility in female mice.35–38 Another
oocyte-specific member of TGF-β superfamily is bone
morphogenetic protein 15 (Bmp15), which is a single
copy gene on the X chromosome in mammals.39 Ovarian

Figure 1 Summary of the expression of oocyte-specific genes involved in folliculogenesis, oogenesis and early embryogenesis.
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follicles in sheep homozygous Bmp15 mutations do not
normally grow beyond the primary follicle stage.40,41

Bmp15 null mice are phenotypically different from sheep
and have minimal ovarian histopathological defects and
smaller litter sizes than wild type mice.42 Genes encod-
ing several other growth factors are also expressed in
mammalian oocytes: Bmp6,43 Tgf-β244 and fibroblast
growth factor 8 (Fgf8).45 Recent studies have revealed
key roles of the oocyte in folliculogenesis and have shown
that bidirectional communication between the oocyte
and somatic cells is essential for development of an egg
so it can undergo fertilization and embryogenesis.46,47

Although these growth factors and other unknown fac-
tors are known to be involved in folliculogenesis, many
of their specific functions are not well characterized.

A factor in the germline, alpha (FIGα) is a basic helix-
loop-helix (bHLH) transcription factor first detected
in oocytes at 13.5 dpc. Female mice lacking Figα are
unable to form primordial follicles which results in
massive depletion of oocytes and sterility.48 Figα has
also been implicated in the coordinate expression of
the three zona pellucida genes (Zp1, Zp2, Zp3) that
encode the mouse egg coat.49,50

MATERNAL-EFFECT GENES IN EARLY 
DEVELOPMENT

DURING OOCYTE GROWTH and follicular develop-
ment oocytes accumulate maternal-effect factors

necessary for early embryogenesis, which occurs in the
absence of de novo transcription of either parental
genome (Fig. 1).27 Maternal-effect genes, which are
well documented in lower species such as Drosophila
melanogaster and Xenopus laevis, encode transcripts or
proteins in the egg during oogenesis that play pivotal
roles after fertilization.51,52 As described above, ZGA occurs
at the 1- to two-cell stages and is a critical event that is
indispensable for further embryonic development in
mice.25 It is speculated that several hundred genes
participate in the activation,53 indicating that some of
the maternal-effect genes might be involved in the ZGA.
However, relatively few maternal-effect genes have been
identified in mammals. Until now, eight maternal-effect
genes, such as Mater, Hsf1, Dnmt1o, Pms2, Zar1, Npm2,
stella and Zfp36I2 have been identified in mice, and
knockout models of these genes have shown that
many of the maternal-effect genes are involved in
the early embryogenesis, especially at the 1- to two-
cell stages.54–61

The maternal antigen that embryo required (MATER)
was first identified as an ooplasm-specific protein encoded

by a single-copy gene that is transcribed in growing
oocytes.62 Homozygous null Mater males and heterozygous
females have normal fertility, although homozygous
females are sterile. Although folliculogenesis, ovulation,
fertilization and the first cleavage appear normal, early
embryos lacking MATER are unable to progress beyond
the two-cell stage.60 Heat-shock factor-1 (Hsf1) was also
identified as a maternal-effect gene. Embryos lacking
HSF1 are blocked mainly at the one-cell stage and
show ultrastructural abnormality in the nuclei at the
two-cell stage.55 Dnmt1o, an oocyte-specific DNA methyl-
transferase, maintains genomic methylation during
preimplantation development.57 Although DNMT1o
accumulates in nuclei of early growing oocytes, but is
sequestered in the cytoplasm of mature oocytes,63 it is
required for the maintenance of the methylation pat-
tern specifically at the 8-cell stage.57 Pms2 has also been
shown to act as a maternal-effect gene which functions
in DNA mismatch repair.56 Recently, oocyte-specific gene,
Zar1 (zygote arrest 1) and Npm2 (nucleoplasmin 2)
have been identified using subtractive hybridization.54,64

Homozygous null Zar1 female are sterile because the
embryos from the female are arrested at the 1- to two-
cell stage. ZAR1 is detected after resumption of meiosis,
it persists in one-cell embryos and rapidly disappears at
the two-cell stage, suggesting a critical role in the oocyte-
to-embryo transition.61 Npm2 knockout females have
fertility defects because of reduced cleavage to the two-
cell stage. In Npm2 null oocytes and zygotes, absence of
coalesced nucleolar structures and loss of heterochro-
matin and deacetylated histone H3 are observed, sug-
gesting that Npm2 is critical for nuclear and nucleolar
organization and embryonic development.54 Stella is a
germ cell-specific maternal-effect gene and embryos
without STELLA are compromised in preimplantation
development and rarely reach the blastocyst stage.58 The
effects of lack of STELLA become evident shortly after
fertilization, with progressively fewer embryos exhibit-
ing normal development during preimplantation stages.
A SAP-like domain and a splicing factor motif-like struc-
ture of Stella suggest possible roles in chromosomal
organization or RNA processing. Zinc finger protein 36
like 2 (Zfp36l2) is also reported to be one of the maternal-
effect genes.59 Zfp36l2 null females apparently cycle and
ovulate normally, and their ova can be fertilized; however,
the embryos do not progress beyond the two-cell stage
of development. ZFP36l2 belongs to an unusual
family of zinc finger proteins containing tandem zinc-
binding motifs characterized by three cysteines followed
by one histidine (CCCH). Through this zinc finger, the
protein can bind to mRNA containing class II AU-rich
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elements; binding is then followed by degradation of
the target mRNA.65

FUNCTION OF GERM CELL-SPECIFIC GENES 
IN GAMETOGENESIS

RECENTLY, NOVEL GENES that are specifically
expressed in the ovary and testis have been reported.

Gasz is one of the newly identified germ cell-specific genes,
encoding a protein containing four ankyrin repeats
(ANK), a sterile-alpha motif (SAM) and a basic leucine
zipper (bZIP) domain.66 Mouse Gasz is shown to be
expressed in oocytes at all stages of oogenesis, pachytene
spermatocytes, round spermatids and preimplantation
embryos at the mRNA and protein revels. Therefore, it
is likely that GASZ functions as a cytoplasmic signaling
molecule in germ cells, because the protein has a motif
that is important for protein–protein interaction.
Furthermore, Gasz orthologs are present in rats, cows,
baboons, chimpanzees and humans, indicating that
the gene has an evolutionally conserved function in
germ cell.67

Newborn ovary homeobox-encoding gene (NOBOX)
is a transcription factor containing a homeobox domain.68

Nobox is expressed in germ cell cysts, and in primordial
and growing oocytes during folliculogenesis (Fig. 1).
Lack of NOBOX accelerates postnatal oocyte loss and
abolishes the transition from primordial to growing
follicles in mice.69 Nobox–/– mice also show a down-
regulation of genes preferentially expressed in the oocyte
including Oct4, Mos, Rfpl4, Fgf8, Zar1, Dnmt1o, Bmp15,
H1oo and Gdf9, whereas ubiquitous genes such as Bmp4,
Kit and Bax are unaffected. Thus, NOBOX might have a
direct role in the regulation of the oocyte-specific gene
expression during folliculogenesis, oogenesis and early
embryogenesis.

ROLE OF AN OOCYTE-SPECIFIC GENE, 
OOG1 DURING MOUSE PREIMPLANTATION 
DEVELOPMENT

WE PREVIOUSLY IDENTIFIED an oocyte-specific
novel gene, Oogenesin (Oog1), that encodes 326

amino acids containing a leucine zipper and a leucine
rich repeat which appears to be necessary for protein–
protein interactions.70,71 More interestingly, OOG1
localized in the nuclei at late one-cell and early two-cell
stages, the time when the zygotic genome activation
occurs in mice. The zygotic genome activation relies on
transcripts and proteins stored in the oocyte during
oogenesis. However, the molecular mechanisms govern-

ing these events are largely unknown. Recently, another
group identified three additional Oog1-like genes (Oog2,
3, 4) containing a leucine rich repeat, speculating that
this family functions by mediating protein–protein
interactions.72 To identify the interacting proteins of
OOG1, we carried out a yeast two-hybrid screening
using a GV oocyte cDNA library and found that RAL
guanine nucleotide dissociation stimulator (RALGDS)
is the potential binding partner of OOG1.73 RALGDS is
one of the Ras effector proteins, exchanging a GDP-bound
inactive state RAL to a GTP-bound active state RAL in a
RAS-dependent manner.74,75 We also showed that RAS-
binding domain (RBD) of RALGDS is indispensable for
the interaction with OOG1 and that OOG1 interact with
activated RAS. It has been reported that the leucine-rich
repeats binds to the GTP-binding motif of G-proteins.76

It is probable that leucine-rich repeats of OOG1, GTP-
binding motif of RAS and RBD of RALGDS play an
important role in the interaction of these proteins.
RALGDS transcript is detected in GV oocytes and pre-
implantation embryos until the end of the four-cell
stage and the protein is localized in the cytoplasm in
oocytes and preimplantation embryos. Interestingly,
the protein appears in the nucleus rather than the cyto-
plasm between late one-cell and late two-cell stages,
suggesting that RALGDS-OOG1 complex is formed
after the activation of RAS and functions in the nucleus
of the one- to two-cell stage embryos.73 In a colocaliza-
tion experiment, it was shown that OOG1 expression is
necessary for the nuclear localization of RALGDS in
transfected HeLa cells. Because the expression profiles and
localization of OOG1 and RALGDS are quite similar in
the late one-cell and early two-cell stage embryos,71,73

the interaction between OOG1 and RALGDS probably
occurs in mouse embryos.

A NEW INSIGHT INTO GENE FUNCTION 
USING BIOFORMATICS

THE CURRENT DATABASES provide many kinds of
biological information, including gene expression,

gene mapping, DNA and protein sequences, and pro-
tein structure and function, for example: National
Center for Biotechnology Information (NCBI; http://
www.ncbi.nlm.nih.gov/), European Molecular Biology
Laboratory (EMBL; http://www.ebi.ac.uk/embl/) and DNA
Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp/
Welcome-j.html). Furthermore, programs designed to
search these databases, such as BLAST (http://
www.ncbi.nlm.nih.gov/blast), are helpful for scientists
using these large data sets. Therefore, the combined use

http://
http://www.ebi.ac.uk/embl/
http://www.ddbj.nig.ac.jp/
http://
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of molecular genetics and bioinformatics is a powerful
approach to investigate the function of the gene of
interest.

Recently, it has been reported by the in silico approach
that some of the oocyte-specific genes, including
Oogenesin and Mater (also known as Nalp5), are organized
in clusters to map near the chromosome ends.72,77,78

Although most oocyte-specific genes organized in clus-
ters are paralogous genes, they seem to have individual
biological roles, that is, Nalp9A-F that are clustered at
vicinity regions of Nalp5 are not able to compensate the
absence of Mater product in Mater (Nalp5)–/– mice.60,77

Interestingly, using the Genome Browser of UCSC
Genome Bioinformatics (http://genome.ucsc.edu/cgi-bin/
hgGateway), we found that the MATER and OOG1
share a similar tertiary structure (Fig. 2). Because a MATER
lacking-embryo is unable to progress beyond the two-
cell stage,73 OOG1 might have the same function as
well as MATER during early embryogenesis.

CONCLUSIONS

IDENTIFICATION AND CHARACTERIZATION of
genes preferentially expressed in oocytes would be

extremely useful in unraveling their oocyte specific
functions in oogenesis, folliculogenesis, fertilization
and early embryogenesis. Therefore, understanding the
biological functions of oocyte-specific genes using genetics,
genomics, proteomics and bioinformatics would help
to accelerate the elucidation of the mechanisms involved
in mammalian development.
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